
Trustable Communication Between

Mathematics Systems∗

Jacques Carette, William M. Farmer, and Jérémie Wajs†

January 21, 2011

Abstract

This paper presents a rigorous, unified framework for facilitating com-
munication between mathematics systems. A mathematics system is
given one or more interfaces which offer deductive and computational
services to other mathematics systems. To achieve communication be-
tween systems, a client interface is linked to a server interface by an
asymmetric connection consisting of a pair of translations. Answers
to requests are trustable in the sense that they are correct provided
a small set of prescribed conditions are satisfied. The framework is
robust with respect to interface extension and can process requests for
abstract services, where the server interface is not fully specified.

Keywords: Mechanized mathematics, computer theorem proving,
computer algebra, intersystem communication, knowledge representa-
tion, mathematical knowledge management.

∗This research was supported by Bell Canada and MITACS. A shorter, preliminary
version of this paper with the same name appeared in: T. Hardin and R. Rioboo, eds.,
CALCULEMUS 2003 (11th Symposium on the Integration of Symbolic Computation and
Mechanized Reasoning, Rome, Italy, September 2003), pp. 58–68, Aracne, Rome, Italy,
2003.

†Address: Department of Computing and Software, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada. E-mail: carette@mcmaster.ca,
wmfarmer@mcmaster.ca, wajs@cas.mcmaster.ca.

1

A-problem
translation
−−−−−−−−→ B-problem

f

y

yB-service

A-answer
translation
←−−−−−−−− B-answer

Figure 1: The basic communication problem

1 Introduction

Current mechanized mathematics systems (MMSs), by and large, fall into
one of three camps: numerics-based (like Matlab, Octave, Scilab, etc), sym-
bolic (Maple, Mathematica, MuPAD, etc), and theorem provers (Coq, hol,
imps, Isabelle, Nqthm, Nuprl, Otter, pvs, etc). Each has its strong points,
although many are more often bemoaned for their weaknesses. These weak-
nesses are all the more frustrating for users as one system’s weakness is
frequently another’s strength. An increasing majority of users are becoming
agnostic in their choice of MMSs, worrying more about getting a particular
task done than whether one übersystem can do it all. Furthermore, it is
important to remark that the expertise needed to build each kind of sys-
tem is markedly different for all three flavors. Although there have been
some efforts at making some of these MMSs broader, familiarity with them
quickly dispels any notion that this dabbling is particularly successful. A
wiser approach, at least in the medium term, is to construct a larger system
out of trusted specialized pieces.

In simple terms, the problem we wish to address, illustrated in Figure 1,
is the following: if system A needs access to a certain functionality f which
it does not currently implement, but a service providing this functionality is
offered by system B, then A should be able to send a request to B containing
a translation of its exact problem into the language of B, wait for B to
perform the service, and then finally receive an answer in its own language.

Informally, we wish to think of “perform f” as a request, the pair of
translations above as a connection, and the set of available functions from
B-problems to B-answers as B’s services. We then want to assert that
meaningful communication happens when the diagram above commutes.

In this paper we present a unified framework which clearly defines these
various concepts (interfaces, services, connections, requests, and answers)
in precise mathematical terms. The overarching concern is that of trust:
when one system requests a service from another, can it trust the result it

2

gets back? Certainly any system which purports to be trustable must also
insist that any communication it makes to another system satisfies the same
requirements. We have not generally addressed the concept of usefulness of
the resulting communication, as we are not aware of any generally accepted
mathematical definition of that concept.

1.1 Useful Communication

Certainly examples of useful communication between systems abound! Com-
mercial system builders are definitely convinced of this fact, as evidenced by
Mathematica’s J/Link, Maple’s Matlab package, Matlab’s Symbolic Tool-
box, and so on.

For example, polynomial arithmetic is frequently a necessary step in a
proof; typical theorem provers will, at best, implement this using rewrite
rules, which are at least an order of magnitude slower than implementations
by Computer Algebra Systems (CASs) [8]. In the opposite direction, closed-
form integration of even simple expressions containing parameters involves
complex algorithms but also complex side conditions which must be verified,
forcing a CAS to call a theorem prover (see [1] and the references therein).

1.2 Obstacles

We consider old obstacles (issues of transport and syntax) to be essentially
solved by common technologies (TCP/IP, sockets, XML, etc). What remains
to be solved adequately is the problem of semantics. Referring back to
Figure 1, it should be clear that describing each arrow, in all cases and for all
possible services, is nontrivial. To achieve our aim of trustability, this issue
is inescapable. To a lesser extent, there is also a problem of interpretability:
even if the answer makes sense in system A, is it “the” answer? The notion
of “the” answer in a theorem proving system is qualitatively different than
in a system centered on numerical analysis, even though both are rigorously
and uniquely defined.

1.3 Organization of the Paper

The rest of the paper is organized as follows: We look at previous related
proposals in section 2. We give definitions for the underlying theory nec-
essary to the presentation of our framework in section 3. In section 4, we
give a simple framework for communication between MMSs. Section 5 illus-
trates the simple framework with an example involving decision procedures.

3

In section 6, we discuss additional obstacles to achieving communication in
real cases, and show how to refine the framework presented in section 4 to
address some of these obstacles. Section 7 illustrates the refined framework
with a substantial example of communication between a theorem prover and
a computer algebra system. Section 8 discusses the specification of requests
and services. Finally, we conclude in section 9.

2 Previous Proposals

Several attempts at addressing the problem of communication between
MMSs have been made. We can classify them into two categories: the first
category consists of work that attempts to deal with the problem in gen-
eral. The second category consists of ad hoc solutions. We review important
members of each category below.

2.1 General Solutions

The OpenMath project [19] claims to provide a common platform for com-
munication between various mathematics systems. However, while it pro-
vides a common syntax, as well as a set of common reference semantics in
the form of “content dictionaries”, it fails in our view to specify a machine
readable semantics for that syntax, which is a major drawback when trying
to make mathematics systems based on different logics communicate. In
other words, there are too many implicit assumptions behind OpenMath’s
version of semantics (as embodied in its content dictionaries) for it to apply
outside the narrow (but useful) realm of standard operations between the
standard CASs.

OMDoc [31] constitutes a refinement to the OpenMath approach: it rec-
ognizes the need for deeper semantics, and introduces them through a notion
of theories. However, OMDoc does not seem to address the actual mechan-
ics of getting different systems to communicate as much as it provides a
common language (syntax + semantics) for them to do so. Nevertheless,
OMDoc could be extended to handle the concepts of our framework: inter-
faces, services, connections, requests, and answers.

The Ω-mkrp [30] approach argues that explicit proofs are needed and
that “external” systems cannot be trusted. This seems very impractical.

The omscs (Open Mechanized Symbolic Computation Systems) [9] work
provides an architecture used to formally specify automated theorem provers

4

and CASs and to formally integrate them. However, it does not seem to
address the issues of trust or extending theories.

Armando and Zini’s Logic Broker Architecture [3], defines a general
framework for communication between MMSs. This approach is concep-
tually very similar to ours. It defines interfaces for MMSs and uses a Logic
Broker (LB) to achieve communication between systems. The LB includes
facilities for translation of requests and meaning-preserving translation of
answers (thus addressing the question of trust), as well as (in theory) a log-
ical specification matcher to match requests to services offered. However,
we believe that this architecture does not support extending theories well,
which we will show can be achieved effectively by our approach.

The new European mowgli project [4], which aims at providing a com-
mon machine-understandable (semantics-based) representation of mathema-
tical knowledge and a platform to exploit it, likely fits here too.

2.2 Ad-hoc Approaches

In many such cases in the literature, only unidirectional cooperation exists:
one system acts as a master, generating requests, while the other one serves
as a slave, fulfilling those requests. This includes Howe’s work on embedding
an hol theory into Nuprl [25], Ballarin and Paulson’s work on using the Σit

library for proofs in Isabelle [6, 8], and Ballarin, Homann, and Calmet’s
work on an interface between Isabelle and Maple [7]. Ballarin and Paul-
son’s work clearly identifies the issue of trust, and distinguishes between
trustable results, for which a formal proof exists, and ad hoc results, based
on approximations.

Another more complex ad hoc case, intended for bidirectional coopera-
tion, is Harrison and Théry’s work on combining hol and Maple [24]. Sim-
ilarly to Ballarin and Paulson, they classify the systems by degree of trust,
for example trusting results proved by hol while checking results given by
Maple.

All these ad hoc solutions have the major drawback of not seeking gen-
erality. Howe, for instance, does not attempt to make hol and Nuprl com-
municate as much as he attempts to embed an hol theory into Nuprl. Why
should the machinery for hol be duplicated in Nuprl when it already exists
in hol itself? In addition, this approach is not valid when the system to be
integrated is a black box. Our approach enables one MMS to use another
MMS’s services without, first, having to reproduce them, and second, having
to know in detail how they work. We will show how it addresses the issue

5

of trust, and eliminates the need to verify every single result (which can be
painfully burdensome).

3 Biform Theories and Translations between

Them

At the heart of this work lies the notion of a “biform theory”, which is
the basis for ffmm, a Formal Framework for Managing Mathematics [22].
Informally, a biform theory is simultaneously an axiomatic and an algorith-
mic theory. Most of the definitions given here are simplified versions of
definitions given in [22].

3.1 Logics

A language is a set of typed expressions. The types include ∗, which denotes
the type of truth values. A formula is an expression of type ∗. For a formula
A of a language L, ¬A, the negation of A, is also a formula of L. A logic is
a set of languages with a notion of logical consequence. If K is a logic, L is
a language of K, and Σ∪{A} is a set of formulas of L, then Σ |=K A means
that A is a logical consequence of Σ in K.

3.2 Transformers and Formuloids

Let Li be a language for i = 1, 2. A transformer Π from L1 to L2 is an
algorithm that implements a partial function π : L1 ⇀ L2. For E ∈ L1, let
Π(E) mean π(E), and let dom(Π) denote the domain of π, i.e., the subset
of L1 on which π is defined. For more on transformers, see [21, 22].

A formuloid of a language L is a pair θ = (Π,M) where:

(1) Π is a transformer from L to L.

(2) M is a function that maps each E ∈ dom(Π) to a formula of L.

M is intended to give the meaning of applying Π to an expression E. M(E)
usually relates the input E to the output Π(E) in some way; for many
transformers, M(E) is the equation E = Π(E), which says that Π transforms
E into an expression with the same value as E itself.

The span of θ, written span(θ), is the set

{M(E) | E ∈ dom(Π)}

6

of formulas of L. Thus a formuloid has both an axiomatic meaning—its
span—and an algorithmic meaning—its transformer. The purpose of its
span is to assert the truth of a set of formulas, while its transformer is
meant to be a deduction or computation rule.

3.3 Biform Theories

A biform theory is a triple T = (K, L,Γ) where:

(1) K is a logic called the logic of T .

(2) L is a language of K called the language of T .

(3) Γ is a set of formuloids of L called the axiomoids of T .

The span of T , written span(T), is the union of the spans of the axiomoids
of T , i.e.,

⋃

θ∈Γ

span(θ).

A is an axiom of T if A ∈ span(T). A is a (semantic) theorem of T , written
T |= A, if

span(T) |=K A.

A theoremoid of T is a formuloid θ of L such that, for each A ∈ span(θ),
T |= A. Obviously, each axiomoid of T is also a theoremoid of T . An
axiomoid is a generalization of an axiom; an individual axiom A (in the usual
sense) can be represented by an axiomoid (Π,M) such that dom(Π) = {A}
and M(A) = A.

T can be viewed as simultaneously both an axiomatic theory and an
algorithmic theory. The axiomatic theory is represented by

Taxm = (K, L, {M(E) | (Π,M) ∈ Γ for some Π and E ∈ dom(Π)}),

and the algorithmic theory is represented by

Talg = (K, L, {Π | (Π,M) ∈ Γ for some M}).

Let Ti = (K, Li,Γi) be a biform theory for i = 1, 2. T2 is an extension of
T1, written T1 ≤ T2, if L1 ⊆ L2 and Γ1 ⊆ Γ2. T2 is a conservative extension
of T1, written T1 � T2, if T1 ≤ T2 and, for all formulas A of L1, if T2 |= A,
then T1 |= A. Note that ≤ and � are partial orders.

7

3.4 Translations and Interpretations

Let Ki be a logic and Ti = (Ki, Li,Γi) be a biform theory for i = 1, 2. A
translation from T1 to T2 is a transformer Φ from L1 to L2 that:

(1) Respects types, i.e., if E1 and E2 are expressions in L1 of the same
type and Φ(E1) and Φ(E2) are defined, then Φ(E1) and Φ(E2) are also
of the same type.

(2) Respects negation, i.e., if A is a formula in L1 and Φ(A) is defined,
then Φ(¬A) = ¬Φ(A).

T1 and T2 are called the source theory and the target theory of Φ, respectively.
Φ is total if Φ(E) is defined for each E ∈ L1. Φ fixes a language L if
Φ(E) = E for each E ∈ L.

An interpretation of T1 in T2 is a total translation Φ from T1 to T2 such
that, for all formulas A ∈ L1, if T1 |= A, then T2 |= Φ(A). An interpretation
thus maps theorems to theorems. (Since any translation respects negation,
an interpretation also maps negated theorems to negated theorems.) A
retraction from T2 to T1 is an interpretation Φ of T2 in T1 such that T1 ≤ T2

and Φ fixes L1.

Lemma 3.1 Let Φ1 be a retraction from T2 to T1 and Φ2 be a retraction
from T3 to T2. Then Φ1 ◦ Φ2 is a retraction from T3 to T1.

Proof Let Φ = Φ1 ◦Φ2. We first need to prove that Φ is an interpretation.
Φ is clearly total. Assume T3 |= A. Then T2 |= Φ2(A) since Φ2 is an
interpretation of T3 in T2. In turn, T1 |= Φ1(Φ2(A)), i.e., T1 |= Φ(A) since
Φ1 is an interpretation of T2 in T1. Hence, Φ is an interpretation of T3 in
T1.

By transitivity of ≤, since T1 ≤ T2 and T2 ≤ T3, T1 ≤ T3.
Finally, we need to prove that Φ fixes L1. Let E ∈ L1 ⊆ L2 ⊆ L3.

Φ2(E) = E since Φ2 is a retraction from T3 to T2 and E ∈ L2. Similarly,
Φ1(Φ2(E)) = Φ1(E) = E since Φ1 is a retraction from T2 to T1 and E ∈ L1.
Hence Φ(E) = E and Φ fixes L1. 2

Proposition 3.2 If Φ is a retraction from T2 to T1, then T1 � T2.

Proof Let A be a formula of the language of T1 such that T2 |= A. We
must show that T1 |= A. By definition, (1) Φ is an interpretation of T2 in
T1 and (2) Φ fixes the language of T1. (1) implies that T1 |= Φ(A), and (2)
implies Φ(A) = A. Therefore, T1 |= A. 2

8

4 A Simple Communication Framework

We now present a simple communication framework, based on the theoret-
ical notions presented in the previous section, that addresses the problem
presented in Figure 1. The framework formalizes the notions we mentioned
in the introduction: interface, service, connection, request, and answer. As
we will show after this section, the framework does not address some impor-
tant obstacles to effective communication between MMSs. A refined frame-
work, which is more practical and which generalizes this simple framework,
is presented in section 6.

An interface is a pair I = (T,S) where:

(1) T is a biform theory called the theory of I.

(2) S is a set of theoremoids of T called the services of I.

As a theoremoid of T , a service of I is a formuloid whose span is a set of
theorems of T and whose transformer is a sound deduction or computation
rule for T .

Let Ii = (Ti,S i) be an interface for i = 1, 2. A connection from I1 to
I2 is a pair C = (export, import) where export is a translation from T1 to
T2, and import is an interpretation of T2 in T1. I1 and I2 are respectively
called the client interface and the server interface of C. export is for trans-
porting problems from T1 to T2; it need not be meaning preserving. import

transports solutions from T2 to T1; it must be meaning preserving.
An informed request is a triple R = (C,E, θ) where:

(1) C = (export, import) is a connection from I1 = (T1,S1) to I2 =
(T2,S2).

(2) E is an expression of the language of T1.

(3) θ = (Π,M) ∈ S2.

The reason to call such a request informed is that it depends not only on
the server interface I2 but on the service θ as well: we assume that the client
interface I1 “knows” about θ. We will come back to this point in section 8.

If
A = (import ◦M ◦ export)(E)

is defined, it is the answer to R; otherwise the answer to R is undefined.
When A is defined, it is a theorem:

Proposition 4.1 Let R and A be as above. If A is defined, then T1 |= A.

9

E
export
−−−−→ E′

?

y

y

θ

A ←−−−−−
import

M(E′)

Figure 2: Communication between two MMSs

Proof Assume A is defined. Since θ is a theoremoid of T2, T2 |= (M ◦
export)(E), and then since import is an interpretation of T2 in T1, T1 |= A.
2

Note that, if C and θ are not chosen well, A may be a useless theorem such
as true or E = E.

The basic problem (Figure 1) is now addressed as shown in Figure 2. All
that is necessary to perform this type of communication are interfaces for
both systems and a connection between the two interfaces.

This takes care of the question of trust (should A believe the answer it
receives from B?), so crucial to the general problem at hand. Whether an
answer is correct depends on whether a translation is an interpretation and
a service is a theoremoid. Thus an answer is trustworthy if the mechanisms
for verifying interpretations and theoremoids are trustworthy.

Note also at this point that a given system may have many interfaces,
each containing only one or a few services of that system. This approach
allows us to consider trustable subsystems within a system and to use those
subsystems in trustable communication. For example, while a result given
by Maple cannot be fully trusted in general, many subparts of Maple are
well encapsulated and could be proved correct.

5 An Example using Decision Procedures

Suppose Shol is a higher-order interactive theorem proving system with sev-
eral implemented theories including COF, a theory of a complete ordered
field. COF has one model up to isomorphism, namely, the real numbers
with the usual operations such as +, ∗, and <. An exceedingly rich the-
ory, COF is adequate for developing real analysis. Suppose also that Sfol is
a first-order automated theorem proving system with several implemented
theories equipped with decision procedures including PA, a theory of first-
order Peano arithmetic. The theoremoids of PA include θ+, a decision proce-
dure for additive number theory (Presburger arithmetic), and θ∗, a decision

10

procedure for multiplicative number theory (sometimes called Skolem arith-
metic). The framework outlined above can be used to give Shol access to
the decision procedures in Sfol.

Let I1 = (COF,S1) be an interface of Shol and I2 = (PA,S2) with
{θ+, θ∗} ⊆ S2 be an interface of Sfol. Also let C = (export, import) be
the connection from I1 to I2 where export translates “first-order natural
number formulas” of COF to formulas of PA and import is a standard in-
terpretation of PA in COF. export is not an interpretation because, unlike
PA, COF satisfies the axioms of second-order Peano arithmetic, and thus
there are theorems of COF that export maps to nontheorems of PA. (export

is also not an interpretation because it is not a total translation.) The in-
terpretation import exists because COF satisfies the axioms of second-order
Peano arithmetic and hence also satisfies the axioms of first-order Peano
arithmetic.

C offers a way of deciding in COF many statements about the natural
numbers using the two decision procedures θ+ and θ∗, both of which are
nontrivial to implement. As an illustration, if the request R = (C,E, θ+) is
made where E is a formula in COF that expresses the Presburger theorem

∀ a, b, c : N . a ≡ b mod n⇔ a + c ≡ b + c mod n,

then the answer might be something like E ⇔ true.
We can continue the example by supposing that the implemented the-

ories of Sfol also includes RCF, a formalization of the first-order theory of
real closed fields (see [13] for a precise description of this theory). The
theoremoids of RCF include θtarski, a decision procedure for RCF.1 Let
I3 = (RCF,S3) with {θtarski} ⊆ S3 be an interface of Sfol. Since a com-
plete ordered field is also a real closed field, it is possible to define a con-
nection from I1 to I3 which will enable a wide range of algebraic statements
about the real numbers expressed in COF to be decided using the decision
procedure θtarski.

6 A Refined Communication Framework

There are several obstacles to effectively employing the simple framework
presented in section 4. In this section, three obstacles involving connections
are addressed.

1A. Tarski proved using quantifier elimination that RCF is a decidable theory (see [36]).
Tarski’s decision procedure and other more efficient decision procedures for RCF are com-
putationally infeasible for large inputs.

11

6.1 Obstacles involving Connections

The first obstacle is that constructing connections between interfaces is a
challenging task, especially when the biform theories of the interfaces are
based on different logics. The export translation of a connection must satisfy
a syntactic condition, but the import interpretation must satisfy both a
syntactic and semantic condition. As a general principle, it is easier to
construct a translation or interpretation Φ if the “primitive basis” of its
source theory T1 (the primitive symbols and axiomoids of T1) is small. In
this case, the translation of a complex expression of T1 may simply be a
composition of the translations of its primitive parts.

The second obstacle is that translating an expression E using the export
translation or the import interpretation of a connection may result in an
expression much larger than E. As a general principle, it is easier to con-
struct a translation or interpretation Φ without this kind of size explosion if
its target theory T2 contains a rich set of defined symbols. In this case, the
translation of an expression of T1 could be made concise using the defined
symbols of T2.

The third obstacle is that the theory S of an MMS behind the biform
theory T of an interface is likely to be enriched with defined symbols over
time. Defining a symbol in S will have the effect of extending T to a new
theory T ′. However, an interpretation Φ of T will not be an interpretation
of T ′ because Φ will not be defined on expressions of T ′ containing the new
defined symbol. As a result, any connection to an interface of the form
(T,S) will be broken by the definition of the new symbol.

6.2 Conservative Stacks

These three obstacles can be addressed by using a “conservative stack” in
place of a biform theory in the definition of an interface. Interface, con-
nection, informed request, and answer are redefined. The resulting refined
framework is a generalized version of the simple framework.

A conservative stack is a pair Σ = (τ, ρ) of sequences where:

(1) τ = 〈T0, . . . , Tn〉 is a finite sequence of biform theories such that, for
all i with 0 ≤ i < n, Ti ≤ Ti+1. Tn is called the theory of Σ.

(2) ρ = 〈Φ1, . . . ,Φn〉 is a finite sequence of translations such that, for all
i with 0 < i ≤ n, Φi is a retraction from Ti to Ti−1.

12

Notice that, by Proposition 3.2, the sequence ρ of retractions implies that τ

is a “stack” of conservative extensions, i.e., T0 � · · ·� Tn. The conservative
stack Σ represents a conservative “development” from the biform theory T0

to its extension Tn.
An interface is a pair I = (Σ,S) where Σ is a conservative stack and S

is a set of theoremoids of the theory of Σ called the services of I.
Let Ii = ((τi, ρi),S i) be an interface with τi = 〈T i

0, . . . , T
i
ni
〉 for i = 1, 2.

A connection C from I1 to I2 is a pair (export, import) where:

(1) export is a translation from U1 to V 2.

(2) import is an interpretation of U2 in V 1.

(3) U1 and V 1 are members of τ1.

(4) U2 and V 2 are members of τ2

Let Φi be the composition of elements of ρi from T i
ni

to U i for i = 1, 2. By
Lemma 3.1, Φi is a retraction from T i

ni
to U i for i = 1, 2. Then

(export ◦ Φ1, import ◦Φ2)

is a connection from (T 1
n1

,S1) to (T 2
n2

,S2) in the simple framework even if
U1 6= V 1 or U2 6= V 2.

An informed request is a triple R = (C,E, θ) where:

(1) C is a connection from I1 to I2 as defined above.

(2) E is an expression of the language of T 1
n1

, the theory of I1.

(3) θ = (Π,M) ∈ S2.

If
A = (import ◦ Φ2 ◦M ◦ export ◦ Φ1)(E)

is defined (where Φ1 and Φ2 are defined as above), it is the answer to R;
otherwise the answer to R is undefined. When A is defined, it is a theorem:

Proposition 6.1 Let R and A be as above. If A is defined, then V 1 |= A.

Proof Assume that A is defined. Since θ is a theoremoid of T 2
n2

, the theory
of I2, T 2

n2
|= (M ◦ export ◦ Φ1)(E), and since Φ2 is a retraction from T 2

n2
to

U2, U2 |= (Φ2 ◦M ◦ export ◦Φ1)(E). Since import is an interpretation of U2

in V 1, we conclude that V 1 |= A. 2

13

Client interface Server interface

System X System Y

A

E’’

A’

export

import

θ
E

E’

M(E’’)

Figure 3: The refined communication framework

The refined communication framework is illustrated in Figure 3. It shows
two interfaces that are connected. The client interface has a conservative
stack

(〈T 1
0 , . . . , T 1

4 〉, 〈Φ
1
1, . . . ,Φ

1
4〉),

and the server interface has a conservative stack

(〈T 2
0 , . . . , T 2

5 〉, 〈Φ
2
1, . . . ,Φ

2
5〉).

The connection is C = (export, import) where export is a translation from T 1
1

to T 2
4 and import is an interpretation of T 2

0 in T 1
3 . The small arrows depict

the retractions Φ1
1, . . . ,Φ

1
4,Φ

2
1, . . . ,Φ

2
5. Let R = (C,E, θ) be the informed

request where E is an expression of T 1
4 and θ = (Π,M) is a service of the

server interface. Then the answer to R is

A = (import ◦Φ2
1 ◦Φ2

2 ◦ Φ2
3 ◦ Φ2

4 ◦ Φ2
5 ◦M ◦ export ◦Φ1

2 ◦Φ1
3 ◦Φ1

4)(E),

provided A is defined. (Since M(E′′) resides in the language of T 2
2 , Φ2

1 ◦ · · · ◦
Φ2

5 could be replace with Φ2
1 ◦Φ2

2.)
The refined framework facilitates the construction of a translation or

interpretation Φ between two interfaces I1 and I2 by allowing the source
theory of Φ to be chosen from the lower part of the conservative stack of
I1 and the target theory of Φ to be chosen from the upper part of the
conservative stack of I2 (addressing the first and second obstacles discussed
above). If a conservative stack Σ is extended to a larger conservative stack
Σ′, then Σ can be freely replaced with Σ′ without compromising any existing
interfaces or connections (addressing the third obstacle).

14

7 Examples of Interaction with Computer Algebra

Systems

Current documented uses of a CAS by a theorem prover are almost all of
the get-and-check variety: call a CAS to get an answer, and then prove that
the answer is correct. For many problems, like factoring of large integers or
polynomials, this is efficient and effective. The exceptions are the systems
Analytica [16] and Theorema [12] which are theorem provers built on top of
Mathematica; this makes them extremely powerful and singularly untrust-
worthy, an intriguing combination. We seek a much wider applicability, and
thus we want to be able to call a computer algebra system to perform correct
computations where verification can be just as expensive as the computa-
tion itself. With conservative stacks of biform theories, especially when the
theories are aimed at a particular subsystem of a CAS, this is possible.

The case where a computer algebra system can profitably call a theo-
rem proving system has been documented in the literature already [1, 2].
Currently the main uses of a theorem prover by a CAS is in checking side-
conditions for the applicability of certain theorems and algorithms, side-
conditions which are frequently ignored in current CASs. One could cyni-
cally observe that this is a futile exercise as computer algebra systems are
widely documented as being inconsistent [11, 20, 27, 28, 35], and that creat-
ing interpretations with inconsistent target theories is trivial. On the other
hand, it is also the case that many of these inconsistencies stem from the
lack of verification of simple side conditions necessary for the applicability
of a particular method. There is thus a reasonable hope that this kind of
communication could become the crucial step in making some of the func-
tionality present in computer algebra systems trustworthy.

There exists a very good rule-of-thumb to understand where current com-
puter algebra systems are or are not trustworthy: algebra versus analysis.
Arithmetic computations for integers, rationals, polynomials, algebraic num-
bers, finite fields, formal series, and matrices over any of these domains are
in modularized sub-systems with well-understood interfaces and completely
trustable theories. This extends to computations of such things as normal
forms for presentations of left R-modules over differential rings (via Gröbner
basis computations) [14, 15] or generating systems of holonomic equations
satisfied by multivariate generating functions associated to attribute gram-
mars for combinatorial structures [23, 32]. On the other hand computations
like differentiation, integration (quadrature), summation, and solving differ-
ential equations, not only have fuzzy interfaces, but also have theoretical

15

underpinnings that are still in a heavy state of flux. To be precise, let us
consider one example: Risch integration [33]. This celebrated algorithm is
completely and firmly grounded in the algebraic theory of differential fields,
which we believe could be fully formalized. However, it is also well-known
that this theory does not respect basic features of analysis (see [26] and the
appendix of [29]) which implies that it is an inaccurate model for the task
at hand, as integration is a firmly analytic concept!

7.1 Computations during Proofs

We will consider two examples, one used by Armando and Zini in [3], as
well as one used by Ballarin [6, 8], but in the context of our framework. For
brevity we will assume that the reader is familiar with these papers and will
use their notation without further introduction.

The problem used by Armando and Zini, originally from [10], is to show
the unsatisfiability of

ms(c) + ms(a)2 + ms(b)2 ≥ ms(c) + ms(b)2 + 2 ∗ms(a)2 ∗ms(b) + ms(a)4

using the lemma
∀X.(ms(X) > 0),

where ms is some unknown but fixed function. The proof, as presented, uses
many standard techniques in theorem proving, but also relies on the fact
that

ms(a)4 + 2 ∗ms(a)2 ∗ms(b)−ms(a)2 = ms(a)2 ∗ (ms(a)2 + 2 ∗ms(b)− 1),

which is readily computed by any computer algebra system. It is important
to note that this only relies on polynomial arithmetic and not on a factorizer
that provably decomposes a polynomial into irreducible factors.

In our framework, a straightforward translation of Armando and Zini’s
example would have system A be RDL and system B be CoCoA (although
it could just as easily have been Maple or Mathematica). We can then set
up a biform theory T1 for RDL’s notion of (factored) polynomials, and T2

for the same theory in CoCoA. Here T1 would be a mostly axiomatic theory,
with axiomoids that state the properties of factoring but do not include a
factoring transformer. T2 would be the a similar axiomatic theory, but with
an axiomoid θ that contains a transformer for factoring. See Chapters 4
and 5 of Ballarin’s PhD thesis [6] for details on these axiomatizations. It
is important to note that T2 is part of the interface to the CAS, and does

16

not necessarily have a computerized representation; in other words one has
to trust that the axiomatization of T2 and its effective implementation are
consistent. The interface I1 = (T1, ∅) does not need any services, but the
interface I2 = (T2, {θ}) needs to contain at least θ. Since we are assuming
that the theories T1 and T2 are semantically very similar, the connection
components export and import are quite easy to formulate as they can be
essentially syntactic in nature.2

The informed request associated to this query would include an expres-
sion like

ms(a)4 + 2 ∗ms(a)2 ∗ms(b)−ms(a)2

in the language of T1, and export would translate it to an expression of the
language of T2. In particular, θ could be (factor, λx.Factor(x) = factor(x)).
Thus upon evaluation and interpretation, we would get

Factor(ms(a)4+2∗ms(a)2∗ms(b)−ms(a)2) = ms(a)2∗(ms(a)2+2∗ms(b)−1)

as an answer. Above, we are using the convention (from Maple) that Factor

describes the problem of factorization where factor describes the algorithm
that implements a solution to this problem; this is frequently described as
saying that Factor is a noun and factor is a verb, but both represent the same
semantic concept. It is rather unfortunate that this convention has yet to
be described in the literature, and that this noun/verb relationship between
mathematical concepts and their implementations is only very sparsely im-
plemented (in any CAS).

The second problem is one involving BCH codes, where one needs to do
factorizations into irreducibles (over F2[X]) as well as performing Gaussian
elimination (over Mn(F2)). The complete problem is laid out in Chapter
5 of [6]. In this case, system A is Isabelle and B is Σit, a library built on
top of the CAS Axiom. Although the theories, services, and interfaces are
more complex, they are essentially built exactly as outlined in the previous
paragraph. The biggest difference here is that in order to prove that a par-
ticular polynomial is a unique and minimal solution to the problem at hand,
one would need to essentially redo all the steps of a Gaussian elimination,
but in prover A’s calculus; this is considerably more difficult that the usual
get-and-check approach. More details can be found in section 5.3.3 of [6].
It is worthwhile to observe that conservative stacks are effectively used in
the theories T1 and T2 associated to these problems, and that these levels

2We note that this is a rare occurrence, and it only seems to happen for old and well-
understood mathematics which has been axiomatized and implemented in a “classical”
manner.

17

E
export
−−−−→ E′

θ1

y

y

θ2

A ←−−−−−
import

M(E′)

Figure 4: The specification matching problem

manifest themselves in the communication (see section 5.3.5 for details). No
proof that import is actually an interpretation is provided, but so much care
was taken in setting up T1 and T2 that we would be surprised if it were not
the case.

8 Specifying Requests and Services

Until now, we assumed that system A “magically” knows that it wants to
use service θ of system B. However, in a more general setting, one would
want to specify a request (like evaluate this computation), and pass that
specification on to some entity able to match it to an available service.

Thus, instead of dealing with services of I2, we need to deal with some
specification S corresponding to some function (transformer) f : L1 → L1

associated with a “virtual service” θ1. Given S, the task then becomes
one of finding an informed request such that our communication diagram
commutes. In theory, this is what we understand Armando and Zini’s LS
Matcher [3] is intended to do, although its task is never defined precisely.

Let us define a reachable service as a theoremoid θ2 of T2 that can be
given a complete specification in some meta-language Spec. We could, for
example, use casl [5], Z [37], or Specware [34] for this task. In other words,
we wish to define services (and requests) implicitly, allowing nonconstruc-
tive definitions as well. Note that we specifically exclude theoremoids that
cannot be finitely axiomatized in Spec. Symmetrically to the notion of a
reachable service, we define a (brokered) request as a pair (E, θ1) where E

is an expression of L1 and θ1 is a virtual service of I1 which can be specified
completely in Spec. (Notice that the request does not contain a connection.)

We then need to solve the specification matching problem: given a pair
(S1, S2) of specifications for θ1 and θ2, does there exist a connection C such
that our communication diagram commutes?

Even in the simplest possible case where both systems are the same, this
problem can still be quite difficult unless great pains are taken to specify

18

each system’s services in a very uniform manner. However the situation is
far from hopeless: even though there are many different ways to specify that,
for example, a particular function is a primality verification function (or an
implementation thereof), the task of deciding that two such specifications
are equivalent is considerably simpler than actually providing a provably
correct implementation!

One should also note the clear applicability of this framework to the
issue of mathematically-oriented Web services [17, 18], where one can use
SOAP and other standard XML encodings for the syntax while retaining
the semantics of the specifications.

9 Conclusion

In this paper we have presented a mathematically rigorous framework for
communicating mathematics between MMSs. This framework gives precise
meanings to notions such as (biform) theories, interfaces, services, connec-
tions, requests, and answers. It addresses the issue of trust, which has been
identified as a central issue in intersystem communication in related papers,
by using interpretations (meaning-preserving translations) to communicate
answers. It also provides facilities for conservatively extending theories,
allowing them to evolve as needed without needing to rebuild whole new
interfaces or to drastically update connections.

We have defined precisely the problem of specification of services, and of
logical specification matching. We are aware that any useful implementation
of the ideas detailed in this paper would need to include such a facility, and
we are working in that direction.

References

[1] A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin, and
S. Owre. Computer algebra meets automated theorem proving: Inte-
grating Maple and pvs. In R. J. Boulton and P. B. Jackson, editors,
Theorem Proving in Higher Order Logics (TPHOLs 2001), volume 2152
of LNCS, pages 27–42. Springer-Verlag, 2001.

[2] Andrew A. Adams, Hanne Gottliebsen, Steve Linton, and Ursula Mar-
tin. Automated theorem proving in support of computer algebra: Sym-
bolic definite integration as a case study. In Proceedings of International

19

Symposium on Symbolic and Algebraic Computation (ISSAC’99), pages
253–260, Vancouver, British Columbia, Canada, 1999. ACM.

[3] A. Armando and D. Zini. Interfacing computer algebra and deduc-
tion systems via the logic broker architecture. In M. Kerber and
M. Kohlhase, editors, Symbolic Computation and Automated Reasoning
(CALCULEMUS-2000), pages 49–64. A. K. Peters, 2001.

[4] A. Asperti and B. Wegner. mowgli—a new approach for the content
description in digital documents. In Ninth International Conference
on Electronic Resources and the Social Role of Libraries in the Future,
Autonomous Republic of Crimea, Ukraine, 2002.

[5] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. D. Mosses,
D. Sannella, and A. Tarlecki. casl: The Common Algebraic Specifica-
tion Language. Theoretical Computer Science, 286:153–196, 2002.

[6] C. Ballarin. Computer Algebra and Theorem Proving. PhD thesis,
Cambridge University, 1999.

[7] C. Ballarin, K. Homann, and J. Calmet. Theorems and algorithms: An
interface between Isabelle and Maple. In International Symposium on
Symbolic & Algebraic Computation (ISSAC-95), pages 150–157, 1995.

[8] C. Ballarin and L. C. Paulson. A pragmatic approach to extending
provers by computer algebra - with applications to coding theory. Fun-
damenta Informaticae, 39:1–20, 1999.

[9] P. G. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specifica-
tion and integration of theorem provers and computer algebra systems.
Fundamenta Informaticae, 39:39–57, 1999.

[10] R. S. Boyer and J Strother Moore. Integrating decision procedures into
heuristic theorem provers: A case study of linear arithmetic. Machine
Intelligence, 11:83–124, 1988.

[11] R.J. Bradford and J.H. Davenport. Towards better simplification of
elementary functions. In Bernard Mourrain, editor, ACM International
Symposium on Symbolic and Algebraic Computation, pages 15–22, 2002.

[12] Bruno Buchberger, Tudor Jebelean, Franz Kriftner, Mircea Marin,
Elena Tomuta, and Daniela Vasaru. A survey of the theorema project.
In International Symposium on Symbolic and Algebraic Computation,
pages 384–391, 1997.

20

[13] C. C. Chang and H. J. Keisler. Model Theory. North-Holland, 1990.

[14] Frédéric Chyzak. An extension of Zeilberger’s fast algorithm to general
holonomic functions. Discrete Mathematics, 217(1-3):115–134, 2000.
Formal power series and algebraic combinatorics (Vienna, 1997).

[15] Frédéric Chyzak and Bruno Salvy. Non-commutative elimination in Ore
algebras proves multivariate holonomic identities. Journal of Symbolic
Computation, 26(2):187–227, August 1998.

[16] Edmund Clarke and Xudong Zhao. Analytica-A theorem prover in
mathematica. In Automated Deduction-CADE-II, pages 761–763, 11th
International Conference on Automated Deduction, Saratoga Springs,
New York, June 15-18 1992.

[17] World Wide Web Consortium. http://www.w3c.com.

[18] World Wide Web Consortium. Mathematical markup language
(MathML) version 2.0.

[19] S. Dalmas, M. Gaëtano, and S. M. Watt. An OpenMath 1.0 implemen-
tation. In International Symposium on Symbolic & Algrebraic Compu-
tation (ISSAC-97), pages 241–248, 1997.

[20] J.H. Davenport. Equality in computer algebra and beyond. Journal of
Symbolic Computation, 34:259–270, 2002.

[21] W. M. Farmer and M. v. Mohrenschildt. Transformers for symbolic
computation and formal deduction. In S. Colton, U. Martin, and
V. Sorge, editors, Proceedings of the Workshop on the Role of Auto-
mated Deduction in Mathematics, CADE-17, pages 36–45, 2000.

[22] W. M. Farmer and M. v. Mohrenschildt. An overview of a Formal
Framework for Managing Mathematics. Annals of Mathematics and
Artificial Intelligence, 38:165–191, 2003.

[23] Philippe Flajolet and Bruno Salvy. Computer algebra libraries for com-
binatorial structures. Journal of Symbolic Computation, 20(5-6):653–
671, 1995.

[24] J. Harrison and L. Théry. A skeptic’s approach to combining hol and
Maple. Journal of Automated Reasoning, 21:279–294, 1998.

21

[25] D. J. Howe. Importing mathematics from hol into Nuprl. In J.
Von Wright et al., editors, Theorem Proving in Higher Order Log-
ics (TPHOLs 1996), volume 1125 of LNCS, pages 267–282. Springer-
Verlag, 1996.

[26] David J. Jeffrey. Integration to obtain expressions valid on domains of
maximum extent. In International Symposium on Symbolic and Alge-
braic Computation, pages 34–41, 1993.

[27] D.J. Jeffrey. The importance of being continuous. Mathematics Maga-
zine, 67:294–300, 1994.

[28] D.J. Jeffrey. Rectifying transformations for the integration of rational
trigonometric functions. Journal of Symbolic Computation, 24:563–573,
1997.

[29] Erich Kaltofen. Challenges of symbolic computation: My favorite open
problems. Journal of Symbolic Computation, 29(6):891–919, 2000.

[30] M. Kerber, M. Kohlhase, and V. Sorge. An integration of mechanised
reasoning and computer algebra that respects explicit proofs. Technical
Report CSRP-96-9, University of Birmingham, 1996.

[31] M. Kohlhase. OMDoc: An open markup format for mathematical doc-
uments (version 1.1). Technical report, Carnegie Mellon University,
2002.

[32] Marni Mishna. Attribute grammars and automatic complexity analysis.
Advances in Applied Mathematics, 30:189–207, 2003.

[33] R. Risch. The problem of integration in finite terms. Trans. Amer.
Math. Soc., 139:167–189, 1969.

[34] Y. V. Srinivas and R. Jullig. Specware: Formal support for composing
software. In Mathematics of Program Construction, pages 399–422,
1995.

[35] D.R. Stoutemeyer. Crimes and misdemeanors in the computer algbebra
trade. Notices of the AMS, pages 701–785, 1991.

[36] L. Van Den Dries. Alfred Tarski’s elimination theory for real closed
fields. Journal of Symbolic Logic, 53:7–19, 1988.

[37] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and
Proof. Series in Computer Science. Prentice Hall, 1996.

22

